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Problem Setup

min
x∈Rn

Φ(x) = f (x) + h(x)

1 f (x) := 1
2 ‖r(x)‖2 = 1

2

∑m
i=1 ri(x)2,

where r(x) := [r1(x) . . . rm(x)]T mapping from Rn to Rm.
Assume r(x) ∈ C1 with Jacobian [J(x)]i,j = ∂ri (x)

∂xj
.

However, these derivatives might not be accessible!

2 h : Rn → R is a convex but possibly nonsmooth regularization term.
Assume the proximal operator of h is cheap to evaluate.
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Motivation

Learning MRI Sampling Patterns (Ehrhardt and Roberts 2021):

min
θ

1

2
‖x∗(θ)− xtrue‖2 + ‖θ‖1

θ ∈ Rd : weights determining importance of Fourier coefficients of the
image
x∗(θ): reconstruct process is complicated!
1-norm: keep sparsity to save time for MRI scan.

Derivative-free optimization (DFO):
black-box, noisy or expensive to evaluate.
several approaches: direct search, Nelder-Mead, model-based, · · ·
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Classical Trust Region Framework

min
x

Φ(x), Φ is smooth

At k-th iteration:
1 Construct a model function mk approximating Φ within trust region

B(xk ,∆k)
2 Find a minimizer of mk within the trust region

sk ∈ arg min
‖s‖≤∆k

mk(xk + s)

3 Calculate the ratio

Rk =
objective decrease

model decrease
=

Φ(xk)− Φ(xk + sk)

mk(xk)− mk(xk + sk)

4 Update iterate xk+1, trust region radius ∆k+1 based on Rk .
(Rk close to 1: step sk successful)

Convergence:
Under reasonable assumption, stationary measure ‖∇Φ(xk)‖ → 0.
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Questions

min
x∈Rn

Φ(x) = f (x) + h(x), f (x) = 1

2
‖r(x)‖2

1 Model construction?
2 Finding minimizer of model function?
3 Update rule?
4 Stationary measure?
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Model Construction
min
x∈Rn

Φ(x) = f (x) + h(x), f (x) = 1

2
‖r(x)‖2

[Cartis and Roberts 2019]
1 Derivative-based (Jacobian J(x) available): Taylor expand r(x):

r(xk + s) ≈ r(xk) + J(xk)s

Φ(xk + s) ≈ f (xk) + r(xk)
T J(xk)s +

1

2
sT J(xk)

T J(xk)s + h(xk + s)

2 Derivative-free: Approximate Jacobian J(xk) at iterate xk by Jk :
r(xk + s) ≈ mk(xk + s) := r(xk) + Jks

Φ(xk + s) ≈ mk(xk + s) := f (xk) + gk
T s +

1

2
sT Hks︸ ︷︷ ︸

pk(xk+s)

+h(xk + s)

where gk := JT
k r(xk) and Hk := JT

k Jk (symmetric + p.s.d.).
Calculation of gk and Hk : For each iteration, maintain an interpolation set
Yk := {y0 := xk , y1, · · · , yn}. Interpolation condition:

mk(yt) = r(yt),∀t = 0, 1, · · · , n
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Questions

min
x∈Rn

Φ(x) = f (x) + h(x), f (x) = 1

2
‖r(x)‖2

1 Model construction? Include h in mk
2 Finding minimizer of model function?
3 Update rule? Interpolation
4 Stationary measure?
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Existing work

min
x∈Rn

Φ(x) = f (x) + h(x), f (x) = 1

2
‖r(xk)‖2

Derivative-free:
Deal with nonsmooth Ψ without exploiting structure:

1 Model-based: [Audet and Hare 2020]
2 Direct search: [Audet and Dennis 2006]

Deal with f (x) + h(c(x))
for f and c black-box smooth, h convex nonsmooth:

1 [Grapiglia, J. Yuan, and Y.-x. Yuan 2016]:
- DFO version of [Cartis, Gould, and Toint 2011]

2 [Garmanjani, Júdice, and Vicente 2016]:
- convergence, worse-case complexity
- smooth vs composite approach

3 [Larson and Menickelly 2024]:
- model-based trust region
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Stationary Measure

min
x∈Rn

Φ(x) = f (x) + h(x), f (x) = 1

2
‖r(xk)‖2

1 If the objective function Φ is smooth: ‖∇Φ(x∗)‖ = 0.
2 If ∇f accessible:

l(x, s) := f (x) +∇f (x)T s + h(x + s)
ζ(x) := l(x, 0)− min

‖s‖≤1
l(x, s)

We say that x∗ is a critical point of Φ if ζ(x∗) = 0.
[Cartis, Gould, and Toint 2011]

3 If ∇f inaccessible: At k-th iteration, after calculating a local approximation
pk of f :

l̃(x, s) := f (x) +∇pk(x)T s + h(x + s), s ∈ Rn

η(x) := l̃(x, 0)− min
‖s‖≤1

l̃(x, s).

Note: If h ≡ 0, η(xk) = ‖gk‖. [Grapiglia, J. Yuan, and Y.-x. Yuan 2016]
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Questions

min
x∈Rn

Φ(x) = f (x) + h(x), f (x) = 1

2
‖r(x)‖2

1 Model construction? Include h in mk
2 Finding minimizer of model function?
3 Update rule? Interpolation
4 Stationary measure? Introduce η(xk) (if h ≡ 0, equal to the ‖gk‖)

New Problem:
5 For convergence, we need the criticality phase to ensure that ∆k is

comparable to η(xk).
How to compute the stationary measure η(xk)?
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Two subproblems
1 Calculating approximate stationary measure:

l̃(xk , s) := f (xk) +∇pk(xk)
T s + h(xk + s)

= f (xk) + gk
T s + h(xk + s)

η1(xk) := l̃(xk , 0)− min
‖s‖≤1

l̃(xk , s)

2 Calculating step size sk :

sk ∈ arg min
‖s‖≤∆k

mk(xk + s) = f (xk) + gk
T s +

1

2
sT Hks + h(xk + s)

⇒Both are of the form: convex smooth + convex nonsmooth s.t. ball
constraint. Specifically, given g , H, h, x, r , and C := B(0, r),

min
d

G(d) := gT d +
1

2
dT Hd︸ ︷︷ ︸

smooth

+ h(x + d)︸ ︷︷ ︸
nonsmooth

+ IC(d)︸ ︷︷ ︸
nonsmooth

.
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Two subproblems
At k-th iteration, given g , H, h, x, r , and C := B(0, r) and

min
d

G(d) := gT d +
1

2
dT Hd︸ ︷︷ ︸

smooth

+ h(x + d)︸ ︷︷ ︸
nonsmooth

+ IC(d)︸ ︷︷ ︸
nonsmooth

.

IDEA: Replacing the nonsmooth h by its smooth approximation. Given a
smoothing parameter µ > 0, smoothing h by its Moreau envelope:

Mµ
h (y) := min

z

{
h(z) + 1

2µ
‖y − z‖2

}
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Two Subproblems
Smoothed version:

⇒ min
d

Gµ(d) := gT d +
1

2
dT Hd + Mµ

h (x + d)︸ ︷︷ ︸
smooth convex=:Fµ(d)

+ IC(d)︸ ︷︷ ︸
nonsmooth convex

.

Now applying accelerated proximal gradient method (FISTA):
∇Fµ(d) = g + Hd +∇Mµ

h (x + d)
proximal operator of IC is the projection operator PC onto C .

Algorithm (Solving two subproblems: Smooth-FISTA (Beck 2017) )
Given smoothing parameter µ > 0.

1 Set d0 = y0 = 0, t0 = 1, and step size L = ‖H‖+ 1
µ .

2 For j = 0, 1, 2, . . .

3 set d j+1 = PC
(
y j − 1

L∇Fµ(y j)
)
;

4 compute y j+1 = d j+1 +
(

tj−1
tj+1

)
(d j+1 − d j).
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Two Subproblems

At k-th iteration, given g , H, h, x, r , and C := B(0, r),

min
d

G(d) := gT d +
1

2
dT Hd︸ ︷︷ ︸

smooth

+ h(x + d)︸ ︷︷ ︸
nonsmooth

+ IC(d)︸ ︷︷ ︸
nonsmooth

.

Theorem (S-FISTA, (Beck 2017) )
Suppose that h is convex and Lh-Lipschitz continuous. Let {d j}j≥0 be the
sequence generated by S-FISTA. For an accuracy level ε > 0, if the
smoothing parameter µ and the number of iterations J are set as

µ =
2ε

Lh(Lh +
√

L2
h + 2 ‖H‖ ε)

and J =
r(2Lh +

√
2 ‖H‖ ε)

ε
, (1)

then for any j ≥ J, it holds that G(d j)− G(d∗) ≤ ε.
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Questions

min
x∈Rn

Φ(x) = f (x) + h(x), f (x) = 1

2
‖r(x)‖2

1 Model construction? Include h in mk
2 Finding minimizer of model function? Using S-FISTA!
3 Update rule? Interpolation
4 Stationary measure? Introduce η(xk) (if h ≡ 0, equal to the ‖gk‖)

New Problem:
5 For convergence, we need the criticality phase to ensure that ∆k is

comparable to η(xk).
How to compute the stationary measure η(xk)? Using S-FISTA!

But S-FISTA is inexact! New issues:
To get our algorithm work, What is the accuracy we need the
stationary measure computed to?
What is the sufficient decrease condition for computing trust region
steps?

⇒How to pick ε in both cases?
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Implementation: Choosing Accuracy Level

Theoretically, we discussed:
Model construction: include h in mk

Stationary measure: introduce η (if h ≡ 0, equal to the ‖gk‖)
Practically, how to implement the algorithm?

How to find a minimizer of mk within the trust region?
For convergence, we have the criticality phase to ensure ∆k is
comparable to η(xk).
How to compute the stationary measure η(xk)?

Solution: Using S-FISTA!

But S-FISTA is inexact! New issues:
To get our algorithm work, What is the accuracy we need the
stationary measure computed to?
What is the sufficient decrease condition for computing the step size?

⇒How to pick ε in both cases?
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Choosing Accuracy Level

Inaccurate estimation:
1 Stationary measure η(xk) := l̃(xk , 0)− min‖s‖≤1 l̃(xk , s): Applying S-FISTA

until
η(xk)− η(xk) ≤ ε1∆k

2 Step size sk ∈ arg min‖s‖≤∆k mk(xk + s): Applying S-FISTA until

mk(xk+sk)−arg min
‖s‖≤∆k

mk(xk+s) ≤ (1− ε2)η(xk)min
{
∆k ,

η(xk)

max{1, ‖Hk‖}

}
.

Remark: This implies a generalized Cauchy decrease condition:

mk(xk)− mk(xk + sk) ≥ ε2η(xk)min

{
∆k ,

η(xk)

max
{
1, ‖Hk‖

}} .
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Full Algorithm
Calculate approximate stationary measure η(xk) inaccurately: applying using
S-FISTA until

η(xk)− η(xk) ≤ ε1∆k

1 If η(xk) < ε, go to the criticality phase.
2 Construct a model function mk within trust region B(xk ,∆k):

mk(xk + s) = f (xk) + gT
k s +

1

2
sT Hks + h(xk + s)

3 Find a minimizer of mk within the trust region: using inexact solver S-FISTA
to get a step sk satisfying ‖sk‖ ≤ ∆k , mk(xk + sk) ≤ mk(xk) and

mk(xk)− mk(xk + sk) ≥ ε2η(xk)min

{
∆k ,

η(xk)

max
{
1, ‖Hk‖

}} .

4 Calculate the decrease ratio Rk

5 Update iterate xk+1, trust region radius ∆k+1 based on Rk and interpolation
set.
(Rk close to 1 & good geometry of interpolation set: step sk successful)
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Convergence & Complexity

min
x∈Rn

Φ(x) = f (x) + h(x), f (x) = 1

2
‖r(xk)‖2

[Liu, Lam, and Roberts 2024]
Convergence and worst-case complexity match for the case h = 0.
Assumptions:

f is continuously differentiable; ∇f is Lipschitz continuous.
h is convex (possibly nonsmooth) and Lipschitz continuous.
(standard) the model Hessians ‖Hk‖ are uniformly bounded.

Theorem (Convergence - true stationary measure)

lim
k→∞

ζ(xk) = 0.

Theorem (Complexity)
For ε ∈ (0, 1], the number of iterations until Ψ1(xk) < ε for the first time
is at most k = O(ε−2), same as the unregularized DFO.
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Numerical Experiments

Improve the state-of-the-art solver DFO-LS: [Cartis, Fiala, et al. 2019]
Use S-FISTA to calculate the generalized stationary measure and
trust region subproblem with regularization inaccurately.
Extend the safety phase from DFO-LS to the case with regularization:
detect insufficient decrease generated by the step size ‖sk‖ before
evaluating f (xk).
Require the proximal operator of h easy-to-compute

Tested on a collection of 53 low-dimensional, unconstrained nonlinear least
squares (from [Moré and Wild 2009]) with 1-norm regularization.
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Numerical Experiments

We compare DFO-LSR to:
NOMAD - direct search DFO solver (not exploit the least-squares
structure). [Le Digabel 2011]
Measuring the proportion of problems solved vs. the number of evaluations

Figure: Left: accuracy level τ = 10−1; Right: accuracy level τ = 10−3
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Summary and Future Work

Summary:
Generalize model-based DFO method for minimizing nonconvex
smooth function with convex regularizers
Applying S-FISTA to compute stationary measure and step size
inaccurately, with practical implementation and theoretical analysis
(results matching with unregularized DFO)
New software for least-squares problems with convex regularizers

Future work:
Adapt to model functions as the sum of derivative-free but possibly
nonconvex quadratic approximation and convex regularizer.

�: https://github.com/yanjunliu-regina/dfols

�: https://arxiv.org/abs/2407.14915

�: https://yanjunliu-regina.github.io/files/Yanjun_Liu_ISMP_2024.pdf
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