Black-Box Optimization Algorithms for Problems with Convex Regularizers joint work with Lindon Roberts (University of Sydney)

Yanjun Liu, Australian National University / Princeton University yanjun.liu@princeton.edu

ISMP, 26 July 2024

Problem Setup

- 2 Algorithm Design
- 3 Implementation
- 4 Full Algorithm and Results Summary

< 17 b

3.5 3

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\Phi(\boldsymbol{x})=f(\boldsymbol{x})+h(\boldsymbol{x})$$

•
$$f(\mathbf{x}) \coloneqq \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|^2 = \frac{1}{2} \sum_{i=1}^m r_i(\mathbf{x})^2$$
,
where $\mathbf{r}(\mathbf{x}) \coloneqq [r_1(\mathbf{x}) \dots r_m(\mathbf{x})]^T$ mapping from \mathbb{R}^n to \mathbb{R}^m .
Assume $\mathbf{r}(\mathbf{x}) \in C^1$ with Jacobian $[J(\mathbf{x})]_{i,j} = \frac{\partial r_i(\mathbf{x})}{\partial x_j}$.
However, these derivatives might not be accessible!

Learning MRI Sampling Patterns (Ehrhardt and Roberts 2021):

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \left\| \boldsymbol{x}^{*}(\boldsymbol{\theta}) - \boldsymbol{x}_{true} \right\|^{2} + \left\| \boldsymbol{\theta} \right\|_{1}$$

- $\boldsymbol{\theta} \in \mathbb{R}^d$: weights determining importance of Fourier coefficients of the image
- $\mathbf{x}^*(\boldsymbol{\theta})$: reconstruct process is complicated!
- 1-norm: keep sparsity to save time for MRI scan.

Derivative-free optimization (DFO):

- black-box, noisy or expensive to evaluate.
- several approaches: direct search, Nelder-Mead, model-based, · · ·

Problem Setup

- 2 Algorithm Design
 - 3 Implementation
- 4 Full Algorithm and Results Summary

< 17 b

3 × 3

$$\min_{\mathbf{x}} \Phi(\mathbf{x}), \quad \Phi \text{ is smooth}$$

At *k*-th iteration:

- Construct a model function m_k approximating Φ within trust region $B(\mathbf{x}_k, \Delta_k)$
- Ind a minimizer of m_k within the trust region

$$oldsymbol{s}_k \in rgmin_{\|oldsymbol{s}\| \leq \Delta_k} m_k(oldsymbol{x}_k + oldsymbol{s})$$

Calculate the ratio

$${{\cal R}_k} = rac{{
m objective decrease}}{{
m model decrease}} = rac{{\Phi ({m x_k}) - \Phi ({m x_k} + {m s_k})}}{{m_k ({m x_k}) - m_k ({m x_k} + {m s_k})}}$$

Update iterate x_{k+1}, trust region radius Δ_{k+1} based on R_k.
 (R_k close to 1: step s_k successful)

Convergence:

Under reasonable assumption, stationary measure $\|\nabla \Phi(\mathbf{x}_k)\| \to 0$.

Yanjun Liu (yanjun.liu@princeton.edu)

ISMP 2024 - Regularized DFO

$$\min_{\mathbf{x}} \Phi(\mathbf{x}), \quad \Phi \text{ is smooth}$$

At *k*-th iteration:

- Construct a model function m_k approximating Φ within trust region $B(\mathbf{x}_k, \Delta_k)$
- **②** Find a minimizer of m_k within the trust region

$$oldsymbol{s}_k \in rgmin_{\|oldsymbol{s}\| \leq \Delta_k} m_k(oldsymbol{x}_k + oldsymbol{s})$$

Calculate the ratio

$${{\cal R}_k} = rac{{
m objective decrease}}{{
m model decrease}} = rac{{\Phi ({m x_k}) - \Phi ({m x_k} + {m s_k})}}{{m_k ({m x_k}) - m_k ({m x_k} + {m s_k})}}$$

Update iterate x_{k+1}, trust region radius Δ_{k+1} based on R_k.
 (R_k close to 1: step s_k successful)

Convergence:

Under reasonable assumption, stationary measure $\|\nabla \Phi(\mathbf{x}_k)\| \to 0$.

Yanjun Liu (yanjun.liu@princeton.edu)

ISMP 2024 - Regularized DFO

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\Phi(\boldsymbol{x})=f(\boldsymbol{x})+h(\boldsymbol{x}),\quad f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x})\|^2$$

Model construction?

- Inding minimizer of model function?
- Opdate rule?
- Stationary measure?

3 x 3

Model Construction

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\Phi(\boldsymbol{x})=f(\boldsymbol{x})+h(\boldsymbol{x}),\quad f(\boldsymbol{x})=\frac{1}{2}\left\|\boldsymbol{r}(\boldsymbol{x})\right\|^2$$

[Cartis and Roberts 2019]

() Derivative-based (Jacobian $J(\mathbf{x})$ available): Taylor expand $\mathbf{r}(\mathbf{x})$:

$$\mathbf{r}(\mathbf{x}_k + \mathbf{s}) \approx \mathbf{r}(\mathbf{x}_k) + \mathbf{J}(\mathbf{x}_k)\mathbf{s}$$

$$\Phi(\mathbf{x}_k + \mathbf{s}) \approx f(\mathbf{x}_k) + \mathbf{r}(\mathbf{x}_k)^T \mathbf{J}(\mathbf{x}_k)\mathbf{s} + \frac{1}{2}\mathbf{s}^T \mathbf{J}(\mathbf{x}_k)^T \mathbf{J}(\mathbf{x}_k)\mathbf{s} + h(\mathbf{x}_k + \mathbf{s})$$

2 Derivative-free: Approximate Jacobian $J(\mathbf{x}_k)$ at iterate \mathbf{x}_k by J_k :

$$\mathbf{r}(\mathbf{x}_{k}+\mathbf{s}) \approx \mathbf{m}_{k}(\mathbf{x}_{k}+\mathbf{s}) \coloneqq \mathbf{r}(\mathbf{x}_{k}) + \mathbf{J}_{k}\mathbf{s}$$

$$\Phi(\mathbf{x}_{k}+\mathbf{s}) \approx \mathbf{m}_{k}(\mathbf{x}_{k}+\mathbf{s}) \coloneqq \underbrace{\mathbf{f}(\mathbf{x}_{k}) + \mathbf{g}_{k}^{T}\mathbf{s} + \frac{1}{2}\mathbf{s}^{T}\mathbf{H}_{k}\mathbf{s}}_{p_{k}(\mathbf{x}_{k}+\mathbf{s})} + h(\mathbf{x}_{k}+\mathbf{s})$$

where $\boldsymbol{g}_k \coloneqq J_k^T \boldsymbol{r}(\boldsymbol{x}_k)$ and $H_k \coloneqq J_k^T J_k$ (symmetric + p.s.d.).

Calculation of g_k and H_k : For each iteration, maintain an interpolation set $Y_k := \{y_0 := x_k, y_1, \dots, y_n\}$. Interpolation condition:

$$m{m}_k(m{y}_t) = m{r}(m{y}_t), orall t = 0, 1, \cdots, n$$
 , where $m{n}_k \in \mathbb{R}$ is the set of the set of

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\Phi(\boldsymbol{x})=f(\boldsymbol{x})+h(\boldsymbol{x}),\quad f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x})\|^2$$

- Model construction? Include h in m_k
- Inding minimizer of model function?
- Opdate rule? Interpolation
- Stationary measure?

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\Phi(\boldsymbol{x})=f(\boldsymbol{x})+h(\boldsymbol{x}),\quad f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x}_k)\|^2$$

Derivative-free:

- \bullet Deal with nonsmooth Ψ without exploiting structure:
 - Model-based: [Audet and Hare 2020]
 - ② Direct search: [Audet and Dennis 2006]
- Deal with $f(\mathbf{x}) + h(\mathbf{c}(\mathbf{x}))$
 - for f and c black-box smooth, h convex nonsmooth:
 - Grapiglia, J. Yuan, and Y.-x. Yuan 2016]:
 - DFO version of [Cartis, Gould, and Toint 2011]
 - [Garmanjani, Júdice, and Vicente 2016]:
 - convergence, worse-case complexity
 - smooth vs composite approach
 - (a) [Larson and Menickelly 2024]:
 - model-based trust region

Stationary Measure

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\Phi(\boldsymbol{x})=f(\boldsymbol{x})+h(\boldsymbol{x}),\quad f(\boldsymbol{x})=\frac{1}{2}\left\|\boldsymbol{r}(\boldsymbol{x}_k)\right\|^2$$

- **1** If the objective function Φ is smooth: $\|\nabla \Phi(\mathbf{x}^*)\| = 0$.
- **2** If ∇f accessible:

$$I(\mathbf{x}, \mathbf{s}) \coloneqq f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{s} + h(\mathbf{x} + \mathbf{s})$$

$$\zeta(\mathbf{x}) \coloneqq I(\mathbf{x}, 0) - \min_{\|\mathbf{s}\| \le 1} I(\mathbf{x}, \mathbf{s})$$

We say that \mathbf{x}^* is a *critical point* of Φ if $\zeta(\mathbf{x}^*) = 0$. [Cartis, Gould, and Toint 2011]

If ∇f inaccessible: At k-th iteration, after calculating a local approximation p_k of f:

$$I(\mathbf{x}, \mathbf{s}) \coloneqq f(\mathbf{x}) + \nabla p_k(\mathbf{x})^T \mathbf{s} + h(\mathbf{x} + \mathbf{s}), \mathbf{s} \in \mathbb{R}^n$$

$$\eta(\mathbf{x}) \coloneqq \tilde{I}(\mathbf{x}, 0) - \min_{\|\mathbf{s}\| \le 1} \tilde{I}(\mathbf{x}, \mathbf{s}).$$

Note: If $h \equiv 0$, $\eta(\mathbf{x}_k) = \|\mathbf{g}_k\|$. [Grapiglia, J. Yuan, and Y.-x. Yuan 2016]

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\Phi(\boldsymbol{x})=f(\boldsymbol{x})+h(\boldsymbol{x}),\quad f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x})\|^2$$

- Model construction? Include h in m_k
- Pinding minimizer of model function?
- Opdate rule? Interpolation
- Stationary measure? Introduce $\eta(\mathbf{x}_k)$ (if $h \equiv 0$, equal to the $\|\mathbf{g}_k\|$)

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \Phi(\boldsymbol{x}) = f(\boldsymbol{x}) + h(\boldsymbol{x}), \quad f(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2$$

- Model construction? Include h in m_k
- ② Finding minimizer of model function?
- Opdate rule? Interpolation
- Stationary measure? Introduce $\eta(\mathbf{x}_k)$ (if $h \equiv 0$, equal to the $||\mathbf{g}_k||$) <u>New Problem:</u>

For convergence, we need the criticality phase to ensure that Δ_k is comparable to η(x_k).
 How to compute the stationary measure η(x_k)?

Problem Setup

- 2 Algorithm Design
- Implementation
- 4 Full Algorithm and Results Summary

< 17 >

э

Two subproblems

Calculating approximate stationary measure:

$$\tilde{l}(\mathbf{x}_k, \mathbf{s}) \coloneqq f(\mathbf{x}_k) + \nabla p_k(\mathbf{x}_k)^T \mathbf{s} + h(\mathbf{x}_k + \mathbf{s})$$
$$= f(\mathbf{x}_k) + \mathbf{g}_k^T \mathbf{s} + h(\mathbf{x}_k + \mathbf{s})$$
$$\eta_1(\mathbf{x}_k) \coloneqq \tilde{l}(\mathbf{x}_k, 0) - \min_{\|\mathbf{s}\| \le 1} \tilde{l}(\mathbf{x}_k, \mathbf{s})$$

2 Calculating step size s_k :

$$\mathbf{s}_k \in \arg\min_{\|\mathbf{s}\| \leq \Delta_k} m_k(\mathbf{x}_k + \mathbf{s}) = f(\mathbf{x}_k) + \mathbf{g}_k^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T H_k \mathbf{s} + h(\mathbf{x}_k + \mathbf{s})$$

< 🗇 🕨

Two subproblems

Calculating approximate stationary measure:

$$\tilde{l}(\mathbf{x}_k, \mathbf{s}) \coloneqq f(\mathbf{x}_k) + \nabla p_k(\mathbf{x}_k)^T \mathbf{s} + h(\mathbf{x}_k + \mathbf{s})$$
$$= f(\mathbf{x}_k) + \mathbf{g}_k^T \mathbf{s} + h(\mathbf{x}_k + \mathbf{s})$$
$$\eta_1(\mathbf{x}_k) \coloneqq \tilde{l}(\mathbf{x}_k, 0) - \min_{\|\mathbf{s}\| \le 1} \tilde{l}(\mathbf{x}_k, \mathbf{s})$$

$$\mathbf{s}_k \in \arg\min_{\|\mathbf{s}\| \leq \Delta_k} m_k(\mathbf{x}_k + \mathbf{s}) = f(\mathbf{x}_k) + \mathbf{g}_k^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T H_k \mathbf{s} + h(\mathbf{x}_k + \mathbf{s})$$

 \Rightarrow Both are of the form: convex smooth + convex nonsmooth s.t. ball constraint. Specifically, given g, H, h, x, r, and $C \coloneqq B(0, r)$,

Two subproblems

At k-th iteration, given \boldsymbol{g} , H, h, \boldsymbol{x}, r , and $C \coloneqq B(0, r)$ and

$$\min_{\boldsymbol{d}} G(\boldsymbol{d}) := \underbrace{\boldsymbol{g}^{\mathsf{T}}\boldsymbol{d} + \frac{1}{2}\boldsymbol{d}^{\mathsf{T}}\boldsymbol{H}\boldsymbol{d}}_{\text{smooth}} + \underbrace{\frac{\boldsymbol{h}(\boldsymbol{x} + \boldsymbol{d})}_{\text{nonsmooth}} + \underbrace{I_{\mathcal{C}}(\boldsymbol{d})}_{\text{nonsmooth}}.$$

IDEA: Replacing the nonsmooth h by its smooth approximation. Given a smoothing parameter $\mu > 0$, smoothing h by its *Moreau envelope*:

Yanjun Liu (yanjun.liu@princeton.edu)

ISMP 2024 - Regularized DFO

July 26, 2024

15 / 2<u>9</u>

Two Subproblems

Smoothed version:

$$\Rightarrow \min_{\boldsymbol{d}} G_{\mu}(\boldsymbol{d}) := \underbrace{\boldsymbol{g}^{T}\boldsymbol{d} + \frac{1}{2}\boldsymbol{d}^{T}H\boldsymbol{d} + M_{h}^{\mu}(\boldsymbol{x} + \boldsymbol{d})}_{\text{smooth convex} :: F_{\mu}(\boldsymbol{d})} + \underbrace{I_{\mathcal{C}}(\boldsymbol{d})}_{\text{nonsmooth convex}}.$$

Now applying accelerated proximal gradient method (FISTA):

•
$$\nabla F_{\mu}(\boldsymbol{d}) = \boldsymbol{g} + H\boldsymbol{d} + \nabla M_{h}^{\mu}(\boldsymbol{x} + \boldsymbol{d})$$

• proximal operator of I_C is the projection operator P_C onto C.

Algorithm (Solving two subproblems: Smooth-FISTA (Beck 2017))

Given smoothing parameter $\mu > 0$.

• Set
$$d^0 = y^0 = 0$$
, $t_0 = 1$, and step size $L = ||H|| + \frac{1}{\mu}$.

2 For
$$j = 0, 1, 2, ...$$

$$\textbf{S} \text{ set } \boldsymbol{d}^{j+1} = P_C \left(\boldsymbol{y}^j - \frac{1}{L} \nabla F_{\mu}(\boldsymbol{y}^j) \right);$$

• compute
$$\mathbf{y}^{j+1} = \mathbf{d}^{j+1} + \left(\frac{t_j-1}{t_{j+1}}\right) (\mathbf{d}^{j+1} - \mathbf{d}^{j}).$$

Two Subproblems

At k-th iteration, given \boldsymbol{g} , H, h, \boldsymbol{x}, r , and $C \coloneqq B(0, r)$,

Theorem (S-FISTA, (Beck 2017))

Suppose that h is convex and L_h-Lipschitz continuous. Let $\{\mathbf{d}^j\}_{j\geq 0}$ be the sequence generated by S-FISTA. For an accuracy level $\epsilon > 0$, if the smoothing parameter μ and the number of iterations J are set as

$$\mu = \frac{2\epsilon}{L_h(L_h + \sqrt{L_h^2 + 2 \|H\|\epsilon})} \quad \text{and} \quad J = \frac{r(2L_h + \sqrt{2 \|H\|\epsilon})}{\epsilon}, \qquad (1)$$

then for any $j \ge J$, it holds that $G(\mathbf{d}^j) - G(\mathbf{d}^*) \le \epsilon$.

Questions

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\Phi(\boldsymbol{x})=f(\boldsymbol{x})+h(\boldsymbol{x}),\quad f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x})\|^2$$

- Model construction? Include h in m_k
- **②** Finding minimizer of model function? Using S-FISTA!
- Opdate rule? Interpolation
- Stationary measure? Introduce $\eta(\mathbf{x}_k)$ (if $h \equiv 0$, equal to the $||\mathbf{g}_k||$) <u>New Problem:</u>
- Solution For convergence, we need the criticality phase to ensure that Δ_k is comparable to η(x_k).

How to compute the stationary measure $\eta(\mathbf{x}_k)$? Using S-FISTA!

18/29

Questions

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\Phi(\boldsymbol{x})=f(\boldsymbol{x})+h(\boldsymbol{x}),\quad f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x})\|^2$$

-

- Model construction? Include h in m_k
- **②** Finding minimizer of model function? Using S-FISTA!
- Opdate rule? Interpolation
- Stationary measure? Introduce $\eta(\mathbf{x}_k)$ (if $h \equiv 0$, equal to the $||\mathbf{g}_k||$) <u>New Problem:</u>
- For convergence, we need the criticality phase to ensure that Δ_k is comparable to $\eta(\mathbf{x}_k)$.

How to compute the stationary measure $\eta(\mathbf{x}_k)$? Using S-FISTA!

But S-FISTA is inexact! New issues:

- To get our algorithm work, What is the accuracy we need the stationary measure computed to?
- What is the sufficient decrease condition for computing trust region steps?

 \Rightarrow How to pick ϵ in both cases?

Implementation: Choosing Accuracy Level

Theoretically, we discussed:

- Model construction: include h in m_k
- Stationary measure: introduce η (if $h \equiv 0$, equal to the $\|\boldsymbol{g}_k\|$)

Practically, how to implement the algorithm?

- How to find a minimizer of m_k within the trust region?
- For convergence, we have the criticality phase to ensure Δ_k is comparable to $\eta(\mathbf{x}_k)$.

How to compute the stationary measure $\eta(\mathbf{x}_k)$?

Solution: Using S-FISTA!

Implementation: Choosing Accuracy Level

Theoretically, we discussed:

- Model construction: include h in m_k
- Stationary measure: introduce η (if $h \equiv 0$, equal to the $\|\boldsymbol{g}_k\|$)

Practically, how to implement the algorithm?

- How to find a minimizer of m_k within the trust region?
- For convergence, we have the criticality phase to ensure Δ_k is comparable to $\eta(\mathbf{x}_k)$.

How to compute the stationary measure $\eta(\mathbf{x}_k)$?

Solution: Using S-FISTA!

But S-FISTA is inexact! New issues:

- To get our algorithm work, What is the accuracy we need the stationary measure computed to?
- What is the sufficient decrease condition for computing the step size?

\Rightarrow How to pick ϵ in both cases?

July 26, 2024

Choosing Accuracy Level

Inaccurate estimation:

• Stationary measure $\eta(\mathbf{x}_k) := \tilde{l}(\mathbf{x}_k, 0) - \min_{\|\mathbf{s}\| \le 1} \tilde{l}(\mathbf{x}_k, \mathbf{s})$: Applying S-FISTA until

$$\eta(\mathbf{x}_k) - \overline{\eta}(\mathbf{x}_k) \le \epsilon_1 \Delta_k$$

3 Step size $s_k \in \arg\min_{\|s\| \le \Delta_k} m_k(x_k + s)$: Applying S-FISTA until

 $m_k(\mathbf{x}_k+\mathbf{s}_k)-\arg\min_{\|\mathbf{s}\|\leq \Delta_k}m_k(\mathbf{x}_k+\mathbf{s})\leq (1-\epsilon_2)\overline{\eta}(\mathbf{x}_k)\min\bigg\{\Delta_k,\frac{\overline{\eta}(\mathbf{x}_k)}{\max\{1,\|H_k\|\}}\bigg\}.$

Remark: This implies a generalized Cauchy decrease condition:

$$m_k(\mathbf{x}_k) - m_k(\mathbf{x}_k + \mathbf{s}_k) \ge \epsilon_2 \overline{\eta}(\mathbf{x}_k) \min\left\{\Delta_k, \frac{\overline{\eta}(\mathbf{x}_k)}{\max\{1, \|H_k\|\}}
ight\}.$$

20 / 29

Problem Setup

- 2 Algorithm Design
- 3 Implementation
- 4 Full Algorithm and Results Summary

- 一司

Э

Full Algorithm

Calculate approximate stationary measure $\eta(\mathbf{x}_k)$ *inaccurately*: applying using S-FISTA until

$$\eta(\mathbf{x}_k) - \overline{\eta}(\mathbf{x}_k) \le \epsilon_1 \Delta_k$$

- If $\overline{\eta}(\mathbf{x}_k) < \epsilon$, go to the criticality phase.
- **Q** Construct a model function m_k within trust region $B(\mathbf{x}_k, \Delta_k)$:

$$m_k(\mathbf{x}_k + \mathbf{s}) = f(\mathbf{x}_k) + \mathbf{g}_k^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T H_k \mathbf{s} + h(\mathbf{x}_k + \mathbf{s})$$

③ Find a minimizer of m_k within the trust region: using *inexact* solver S-FISTA to get a step s_k satisfying $||s_k|| \le \Delta_k$, $m_k(x_k + s_k) \le m_k(x_k)$ and

$$m_k(\mathbf{x}_k) - m_k(\mathbf{x}_k + \mathbf{s}_k) \ge \epsilon_2 \overline{\eta}(\mathbf{x}_k) \min\left\{\Delta_k, \frac{\overline{\eta}(\mathbf{x}_k)}{\max\{1, \|H_k\|\}}
ight\}.$$

• Calculate the decrease ratio R_k

Update iterate x_{k+1}, trust region radius Δ_{k+1} based on R_k and interpolation set.
 (R_k close to 1 & good geometry of interpolation set: step s_k successful)

Convergence & Complexity

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\Phi(\boldsymbol{x})=f(\boldsymbol{x})+h(\boldsymbol{x}),\quad f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x}_k)\|^2$$

[Liu, Lam, and Roberts 2024]

-

Convergence and worst-case complexity match for the case h = 0. Assumptions:

- f is continuously differentiable; ∇f is Lipschitz continuous.
- h is convex (possibly nonsmooth) and Lipschitz continuous.
- (standard) the model Hessians $||H_k||$ are uniformly bounded.

Theorem (Convergence - *true* stationary measure)

$$\lim_{k\to\infty}\zeta(\boldsymbol{x}_k)=0.$$

Theorem (Complexity)

For $\epsilon \in (0,1]$, the number of iterations until $\Psi_1(\mathbf{x}_k) < \epsilon$ for the first time is at most $k = \mathcal{O}(\epsilon^{-2})$, same as the unregularized DFO.

Yanjun Liu (yanjun.liu@princeton.edu)

Improve the state-of-the-art solver DFO-LS: [Cartis, Fiala, et al. 2019]

- Use S-FISTA to calculate the generalized stationary measure and trust region subproblem with regularization *inaccurately*.
- Extend the safety phase from DFO-LS to the case with regularization: detect insufficient decrease generated by the step size ||s_k|| before evaluating f(x_k).
- Require the proximal operator of *h* easy-to-compute

Tested on a collection of 53 low-dimensional, unconstrained nonlinear least squares (from [Moré and Wild 2009]) with 1-norm regularization.

Numerical Experiments

We compare DFO-LSR to:

NOMAD - direct search DFO solver (not exploit the least-squares structure). [Le Digabel 2011]

Measuring the proportion of problems solved vs. the number of evaluations

Figure: Left: accuracy level $\tau = 10^{-1}$; Right: accuracy level $\tau = 10^{-3}$

Summary:

- Generalize model-based DFO method for minimizing nonconvex smooth function with convex regularizers
- Applying S-FISTA to compute stationary measure and step size inaccurately, with practical implementation and theoretical analysis (results matching with unregularized DFO)
- New software for least-squares problems with convex regularizers

Future work:

- Adapt to model functions as the sum of derivative-free but *possibly nonconvex quadratic* approximation and convex regularizer.
- **O**: https://github.com/yanjunliu-regina/dfols

: https://arxiv.org/abs/2407.14915

🕲: https://yanjunliu-regina.github.io/files/Yanjun_Liu_ISMP_2024.pdf

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

References I

- Audet, Charles and J. E. Dennis (2006). "Mesh Adaptive Direct Search Algorithms for Constrained Optimization". In: SIAM Journal on Optimization 17.1, pp. 188–217.
- Audet, Charles and Warren Hare (2020). "Model-Based Methods in Derivative-Free Nonsmooth Optimization". In: Numerical Nonsmooth Optimization: State of the Art Algorithms. Springer International Publishing, pp. 655–691.
- Beck, Amir (2017). *First-order methods in optimization*. SIAM.
- Cartis, Coralia, Jan Fiala, et al. (2019). "Improving the flexibility and robustness of model-based derivative-free optimization solvers". In: ACM Transactions on Mathematical Software (TOMS) 45.3, pp. 1–41.
- Cartis, Coralia, Nicholas IM Gould, and Philippe L Toint (2011). "On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming". In: SIAM Journal on Optimization 21.4, pp. 1721–1739.

イロト イポト イヨト イヨト

References II

- Cartis, Coralia and Lindon Roberts (2019). "A derivative-free Gauss–Newton method". In: Mathematical Programming Computation 11, pp. 631–674.
- Ehrhardt, Matthias J and Lindon Roberts (2021). "Inexact derivative-free optimization for bilevel learning". In: Journal of mathematical imaging and vision 63.5, pp. 580–600.
- Garmanjani, Rohollah, Diogo Júdice, and Luís Nunes Vicente (2016).
 - "Trust-region methods without using derivatives: worst case complexity and the nonsmooth case". In: *SIAM Journal on Optimization* 26.4, pp. 1987–2011.
- Grapiglia, Geovani Nunes, Jinyun Yuan, and Ya-xiang Yuan (2016). "A derivative-free trust-region algorithm for composite nonsmooth optimization". In: *Computational and Applied Mathematics* 35.2, pp. 475–499.

Larson, Jeffrey and Matt Menickelly (2024). "Structure-aware methods for expensive derivative-free nonsmooth composite optimization". In: Mathematical Programming Computation 16.1, pp. 1–36. Le Digabel, Sébastien (2011). "Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm". In: ACM Transactions on Mathematical Software (TOMS) 37.4, pp. 1–15. Liu, Yanjun, Kevin H Lam, and Lindon Roberts (2024). "Black-box Optimization Algorithms for Regularized Least-squares Problems". In: arXiv preprint arXiv:2407.14915. Moré, Jorge J and Stefan M Wild (2009). "Benchmarking derivative-free optimization algorithms". In: SIAM Journal on Optimization 20.1, pp. 172–191.